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Abstract

The main topic of this paper is the analysis of momentum and heat transfer mechanisms occurring inside a disturbed

boundary layer. This analysis is carried out based on a phenomenological decomposition using von Karman�s integral
equations, in which appear terms that account for several contributions: the flat plate term, and the unsteady and

external gradient terms.

This method is applied to the interaction between a single transverse vortex and a boundary layer developing on a

flat plate. Based on numerical simulations, we present a qualitative and quantitative study of the behavior of mo-

mentum and heat wall transfer described by the terms resulting from the phenomenological decomposition. Finally, the

time-dependent behavior of the analogy factor is investigated.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many investigations involving convective heat

transfer in the proximity of a solid wall, the analogy

between dynamic and thermal fields as transfer coeffi-

cients is often claimed. This analogy defined in various

books [1,2], derived from the similarities between mo-

mentum and heat equations with their related boundary

conditions, is valid only for a flow along a flat plate with

uniform boundary conditions.

Nevertheless, it appears that either instantaneous or

time averaged, this analogy is very often used far from

the original domain of validity. As examples, we refer to

heat enhancement techniques with riblets, optimisation

of heat transfer in heat exchangers circuits, electronic

circuits, heat sinks and heavy-duty devices embedded in

turbine blades of aeronautical engines. In those situa-

tions featuring particularly ribbed walls or impacting

jets, we are far from the mathematical models in which

the analogy remains valid.

Another field of interest for the vortex boundary

layer interaction is the modelisation of the turbulent

boundary layer with thermal effects. Indeed, vortex

structures inside the outer layer affect the thin viscous

layer in ways similar to the way which the vortex in-

teracts with the boundary layer. Although various dy-

namic models exist, the thermal modeling usually relies

on algebraic models such as the turbulent Prandtl

model.

In the present work, we put forward our analysis

based on the decomposition term by term of the von

Karman�s integral equations for momentum and heat
transfer. The first objective is the understanding of

physical response of boundary layers in situations far

more complex than the so-called ‘‘flat plate uniform

situation’’. This is achieved thanks to well-known solu-

tions of the unsteady dynamic and thermal von Karman
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integral equations. The first part of this paper (Sections

2–4) is devoted to this phenomenological analysis with

elementary boundary layer solutions.

In Section 5, our second objective is to simulate the

interaction of a single vortex with a laminar boundary

layer. With the same phenomenological decomposition

used in the first part, we will provide a local analysis of

the dynamic and thermal transfer coefficients and the

analogy factor when the boundary layer is affected by

the unsteady field velocity of the vortex.

Previous works related to the vortex boundary in-

teraction are mostly numerical simulations and very few

take in account thermal effects. The first reference to

vortex boundary interaction is due to Harvey and Perry

[3] where the motivation of this study lays in the decay

of wing tip vortices near airport runways. Doligalski and

Walker [4] gave theoretical backgrounds and asymp-

totical solutions of the interaction. Experimental char-

acterisation and studies of the interaction were carried

out by Peube and Ferret [5] and Reulet [6]: the first

paper is dealing with vortex generation and fluid me-

chanics aspects whereas in the second one, some of the

results obtained are quite confusing as the wake vortex

due to the generator triggers the turbulence in the

boundary layer flow on the plate downstream. Corjon

and Poinsot [7] provided numerical simulations of the

interaction of two counter-rotating vortices with a

boundary layer, modelling the wing tip vortices problem

as depicted by Harvey et al. Pellerin [8] studied a single

vortex interaction with a boundary layer but without

thermal effects. Finally, Tafti [9] carried throughout a

dynamic and thermal analysis, however the periodic

vortex shedding generated with a thin vertical plate

upstream the boundary layer prevent the author from a

clear statement about the behavior of the dynamic and

thermal transfer coefficients during the interaction. So it

appears that the literature devoted to both dynamic and

thermal behaviour is very sparse and not clear in the

conclusions.

With the simulation of the vortex boundary layer

interaction, we expect to establish some links between

the theoretical approach used in the first part and more

physical and industrial applications like those depicted

previously (heat transfer enhancement, turbulent

boundary layer models).

2. Mathematical formulation of the boundary layer

In this part we write the governing equations of the

boundary layer with the following three assumptions,

which won�t reduce the scope of our analysis.

Nomenclature

Normal characters

Cp specific heat at constant pressure (J kg�1

K�1)

p static pressure (kgm s�2)

u velocity vector (m s�1)

u, v instantaneous components of velocity

(m s�1)

U1 freestream velocity (m s�1)

t time variable (s)

T1 freestream temperature (m s�1)

Tw wall temperature (K)

x, y longitudinal and transverse coordinates (m)

Greek characters

C vortex circulation (m2 s�1)

c dimensionless circulation

d, D dynamic and thermal boundary layer

thicknesses (m)

d1, D1 dynamic and thermal displacement bound-

ary layer thicknesses (m)

d2, D2 momentum and enthalpy boundary layer

thicknesses (m)

d3 kinetic energy boundary layer thickness (m)

l dynamic viscosity coefficient (kgm�1 s�1)

m kinematic viscosity coefficient (m2 s�1)

q fluid density (kgm�3)

sw wall shear stress (kgm�1 s�2)

uw wall heat flux (Wm�2)

x vorticity vector (s�1)

xz transverse vorticity components (s�1)

Dimensionless numbers

Cf skin friction coefficient

Ch heat transfer coefficient (or Stanton number)

Cp wall pressure coefficient

Ek Eckert number

M Mach number

Pr Prandtl number

Re Reynolds number

ReC vortex circulation based Reynolds number

s analogy factor ¼ 2Ch
Cf

� �
Subscripts

1 related to freestream

w related to wall

t, C related to the vortex

fp related to flat plate term

unst related to unsteady term

ext related to external gradient term
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The physical model involves a Newtonian fluid with

flows in a range from moderate up to large Reynolds

numbers. The hypotheses H1 and H2 for the flow and

heat transfer are respectively the incompressibility (Mach

number M � 1) and non-dilatability for the fluid. The
second assumption reads:

Tw � T1
T1

� 1 ð1Þ

Upon these two assumptions, the flow is driven by

isovolume evolution.

We define the Eckert number as:

Ek ¼ U 21
CpðT1 � TwÞ

� M2
Tw�T1
T1

ð2Þ

Thus if we want to neglect the volumetric power terms

associated with pressure works and viscous dissipation

with respect to the other terms, we should add hypoth-

esis H3 (Ek ¼ 0) for sake of regularity (well posedness)
of the ratio between kinematic heating and thermal

heating.

In the following, we will restrict ourselves to a heated

flat plate boundary layer flow. The equations are scaled

using U1, qU 21 and T1 � Tw quantities respectively for
the velocity, pressure and temperature difference T � Tw.
The resulting mathematical model reads as follows:

o�uu
o�tt

þ �uu
o�uu
o�xx

þ �vv
o�uu
o�yy

¼ � o�pp
o�xx

þ 1
Re

o2�uu
o�yy2

ð3Þ

oT
o�tt

þ �uu
oT
o�xx

þ �vv
oT
o�yy

¼ 1

RePr
o2T
o�yy2

ð4Þ

with dimensionless variables:

�uu ¼ u
U1

�vv ¼ v
U1

T ¼ T � Tw
T1 � Tw

�pp ¼ p
qU 21

The associated boundary conditions are: �uu ¼ T ¼ 0 at
the wall and �uu ¼ T ¼ 1 in the free stream flow.
As general observations, we make the two following

statements. First, we notice that dynamic and thermal

equations differ one another from the longitudinal

pressure gradient term and the diffusion coefficients.

Thus, introducing the velocity-vorticity formulation, the

mathematical analogy between the transverse compo-

nent of the vorticity xz and the temperature is obvious:

o �xxz

o�tt
þ �uu

o �xxz

o�xx
þ �vv

o �xxz

o�yy
¼ 1

Re
o2 �xxz

o�yy2
ð5Þ

However boundary conditions at the wall remains dif-

ferent due to the implicit boundary condition for the

vorticity xz at the wall.

Now, back to the original set of equations (3) and (4),

we give some definitions. First, we notice that the

analogy is fulfilled when the pressure gradient is zero

and the Prandtl number is equal to one. This is known as

the Reynolds analogy, for laminar and turbulent flow

(with algebraic models). The main consequence is the

equality between dimensionless velocity and tempera-

ture profiles: �uu ¼ T . In this case, the analogy factor is
equal to unity and defined as follows:

s ¼ 2Ch
Cf

¼ 1

where:

Cf
2

¼~eex 	 ~~rr~rrv 	~eey jw
q1U 21

¼ sw
q1U 21

¼ 1
Re

o�uu
o�yy

�����
w

¼ � �xxzjw
Re

ð6Þ

Ch ¼ ~qq 	~eey jw
q1U1CpðTw � T1Þ

¼ uw
q1U1CpðTw � T1Þ

¼ 1

RePr
oT
o�yy

����
w

ð7Þ

However, in most cases, convective, diffusive and

acoustic time scales encountered in Eqs. (3) and (4) have

very different orders of magnitude, and full mathemati-

cal models are required to take into account all physicals

effects as the pressure gradient, the Prandtl number and

the boundary condition effects (e.g.: blowing throughout

the wall or time dependent free stream velocity or/and

temperature).

The next sections are organized as follows. First, we

reconsider the dynamic and thermal von Karman

equations in a more general context. Each term in these

equations will be defined and identified respectively as

the flat plate term (related to undisturbed steady

boundary layer flow), the unsteady term (related to un-

steady boundary layer flow) and the external gradient

term (related to free stream dependent perturbations).

Parametric sensitivity to Prandtl number is investigated

in Section 4.

In Section 5, we investigate by numerical simulation

the interaction of a transverse vortex with a boundary

layer using the above-mentioned phenomenological de-

composition. Although this flow is rather academic, it is

nevertheless found in unsteady separating flows like

boundary layers flow with obstacles like ribbed walls or

vortex blades interaction in turbine stage of aeronautical

engines.

3. Dynamic and thermal von Karman equations

Following von Karman method, we integrate Eqs. (3)

and (4) along the normal direction from the wall to in-

finity. It results in a tangential wall shear stress sw term
and wall heat flux uw term as functions of dynamic
boundary layer thicknesses (di, i ¼ f1; 2; 3g) and thermal
boundary layer thicknesses (Di, i ¼ f1; 2g) which defi-
nitions are to be found in [10].
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3.1. Unsteady dynamic von Karman equation

We extend the usual von Karman equation with

hypothesis H1 and H2 to unsteady boundary layer

situations. Those equations reads as follows:

sw
q1

¼ o

ot
ðU1d1Þ þ

o

ox
ðU 21d2Þ þ U1

oU1

ox
d1 ð8Þ

in which the first term in the right hand side correspond

to time dependency.

3.2. Unsteady thermal von Karman equation

The unsteady von Karman thermal equation (with

additional hypothesis H3) obtained using the same

procedure as for steady case is less usual. The wall heat

flux is expressed as follows:

uw
q1

¼ o

ot
½CpD1ðTw � T1Þ� þ o

ox
½CpðTw � T1ÞU1D2�

� U1d1 Cp
oT1
ox

�
þ U1

oU1

ox

�
ð9Þ

From Eqs. (8) and (9), we propose a obvious decom-

position of each term in Table 1. We classify each term

according to their physical meaning as we suggested in

the previous section: the unsteady term, the flat plate

term and the external gradient term. If hypothesisH3 is

not retained, additional terms shown in the third column

of Table 1 are to be considered.

This is a phenomenological decomposition or split-

ting of the unsteady von Karman equation, because each

of these terms could be related with simple solutions in

which this physical behavior is dominant. Therefore

Prandtl number influence for each term of the von

Karman equation can be study through analytical or

accurate numerical solutions of the corresponding aca-

demical cases.

At this step, the analogy between dynamic and

thermal terms (with the outstanding exception of the

external gradient terms) is straightforward if we substi-

tute U1 by ðTw � T1) and dynamic boundary layer
thicknesses by the thermal ones. We will precise further

this aspect in the following paragraph.

4. Analysis term by term of the phenomenological

decomposition

In this section, we give a full set of solutions for each

terms involved in the decomposition using some results

from the literature.

4.1. The flat plate term

The physical flow related to this term is a heated flat

plate without external perturbations. Since Blasius and

Polhausen stepping stone works, the solution of this

problem is well known and obtained by a transforma-

tion of the partial derivatives momentum equation (Eq.

(3)) into a third order nonlinear ordinary derivatives

equation.

For dynamic solution, we refer to [11,12] for the

classical Blasius equation and variable definition.

For the thermal solution, the same procedure is ap-

plied to the general thermal equation (with kinetic

heating effects) which is a quasi-linear second order

ODE:

h00ðgÞ þ Pr
2
f ðgÞhðgÞ þ PrEk f 002 ¼ 0 ð10Þ

with associated boundary conditions:

hð0Þ ¼ 0 and hð1Þ ¼ 1

The resulting expression for hðgÞ follows:

hðgÞ ¼ 1� 1

 
�
R g
0
f 00Pr dg0R1

0
f 00Pr dg

!
1

	
þ nð0ÞEk

2



þ nðgÞEk

2

with nðgÞ ¼ 2Pr
Z 1

g
f 00Pr

Z g0

0

f 002�Pr
dg00

 !
dg0 ð11Þ

By computing boundary layer thicknesses and wall co-

efficients (skin friction and heat transfer), we get the

value of the analogy factor as a function of the Prandtl

number:

sfp ¼
h0ð0Þ

f 00ð0ÞPr ¼
1

Pr
f 00Pr�1ð0ÞR1
0

f 00Pr dg

 !
1

	
þ Ek
2Pr

nð0Þ



ð12Þ

Table 1

Von Karman term decomposition classification

Term sw=q1 uw=ðq1CpÞ Term Ek (Ek 6¼ 0)

Flat plate U 21
od2
ox

U1ðTw � T1Þ
oD2
ox

Ek
2

od3
ox

Unsteady
o

ot
ðU1d1Þ

o

ot
½ðTw � T1ÞD1� Ek

2
ðd1 þ d2Þ

External gradient U1
oU1

ox
ðd1 þ 2d2Þ

o

ox
½U1ðTw � T1Þ�D2 �U1

oT1
ox

d1
Ek
2
ð2d1 þ d3Þ
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We report in Fig. 1, the variation of sfp against Pra-
ndtl number for three values of Ek. The evolution for
Ek ¼ 0 is to be compared with the asymptotic laws for
Pr � 1 and Pr � 1 referred by Bejan [11]. Values of the
analogy factor below Pr ¼ 0:05 are hardly reliable, be-
cause of roundoff errors polluting the numerical inte-

gration of the former equation.

Using the analogy factor sfp definition and the ex-
pression of the wall sheet stress and wall heat flux, we

obtain the analogy factor as function of the boundary

layer thicknesses:

sfp ¼
D2
d2

þ Ek
2

d3
d2

¼ ffpðPr;EkÞ þ 1:57
Ek
2

ð13Þ

First, we note that ffpðPr;EkÞ ¼ ffpðPrÞwPr�2=3 for low
Eckert numbers which is a well-known result mentioned

by Kays and Crawford [1]. Then, we notice that mo-

mentum and enthalpy thicknesses are analogous i.e.

their variations scale with a multiplicative constant.

4.2. The unsteady term

Here, we assume the flow and heat transfer are in-

variant with the longitudinal direction (stream lines and

temperature isolines are parallel to the horizontal solid

flat plate). This problem is well documented in the lit-

erature and referred as Rayleigh–Stokes problem. The

corresponding set of equations (see [12]) is:

o�uu
o�tt

¼ 1
Re

o2�uu
o�yy2

ð14Þ

oT
o�tt

¼ 1

RePr
o2T
o�yy2

þ 1
Re

o�uu
o�yy

 !2
ð15Þ

By means of the change of coordinate:

g ¼ �yy

2
ffiffiffiffi
m�tt

p

and introducing:

f ¼ �uu
U1

we reduce the PDE (14) to a linear second order ODE:

f 00 þ 2gf 0 ¼ 0 ð16Þ

with boundary conditions: f ð0Þ ¼ 0 and f ð1Þ ¼ 1. The
solution is the error function:

f ðgÞ ¼ erfðgÞ ¼
Z g

0

e�g2 dg

The dynamic von Karman equation restricted to this

term is written as follows:

sw ¼ qU1
od1
ot

¼ qU1

ffiffiffiffiffi
m
pt

r
ð17Þ

For the thermal problem, solutions for all Prandtl

numbers and Eckert numbers can be integrated without

a loss of generality. They were computed by integrating

of the following ODE:

h00 þ 2Prgh þ PrEk f 02 ¼ 0 ð18Þ

resulting from the change of variable:

h ¼ T � Tw
T1 � Tw

As example, we give formal expression in the range

0 < Pr < 2 (for the whole set of solution, see [13]):

hðgÞj0<Pr<2 ¼ erfðg
ffiffiffiffiffi
Pr

p
Þ

� 1

"
þ 2Ek

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr
2� Pr

r
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� Pr
Pr

r !

� erfðg
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� Pr

p
Þ
#

þ 2Ek
ffiffiffiffiffi
Pr
p

r Z g

0

e�ð2�PrÞz2 erfð
ffiffiffiffiffi
Pr

p
zÞdz ð19Þ

The resulting analogy factor for the same range of

Prandtl number values is:

sunst ¼
1þ 2Ek

p

ffiffiffiffiffiffiffi
Pr
2�Pr

q
arctan

ffiffiffiffiffiffiffi
2�Pr
Pr

q� �h i
ffiffiffiffiffi
Pr

p ð20Þ

and expressed as function of the boundary layer thick-

nesses:

sunst ¼
D1
d1

þ Ek
2
1

	
þ d2

d1



¼ f2ðPr;EkÞ þ

ffiffiffi
2

p

2
Ek ð21Þ

Fig. 1. Analogy factor on a flat plate: sfpðPr;EkÞ (log–log
graph).
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with f2ðEk; PrÞ ¼ f2ðPrÞ ¼ Pr�1=2 for low Eckert num-
bers. The evolution of the analogy factor with the Pra-

ndtl number ranging from 0 to 10 are reported in Fig. 2

and for three values of Eckert number. We observe that

the dynamic and thermal boundary layer displacement

thicknesses are analogous.

4.3. External gradient term

In this section, we refer to the Falkner–Skan [14] results

about pressure gradient driven boundary layer flow. It is

assumed that the free stream velocity U1 and temperature

ðT1 � TwÞ behave like power law with respect to x:
U1ðxÞ ¼ kxm ðT1 � TwÞðxÞ ¼ kxn

with m ¼ �x
qU 21

dp
dx

For the momentum equation, using the same change

of variable and function from the Blasius theory, we

obtain:

f 000 þ mþ 1
2

ff 00 þ mð1� f 02Þ ¼ 0 ð22Þ

with the following boundary conditions: f ð0Þ ¼ f 0ð0Þ ¼
0 and f 0ð1Þ ¼ 1. We get the boundary layer thicknesses
and skin friction coefficient by integration of Eq. (22):

d1

ffiffiffiffiffiffiffi
U1

mx

r
¼
Z 1

0

ð1� f 0Þdg ¼ ½g � f �1 ð23Þ

d2

ffiffiffiffiffiffiffi
U1

mx

r
¼
Z 1

0

f 0ð1� f 0Þdg

¼ 2

3mþ 1 f
00ð0Þ

�
� 2m
3mþ 1 ðg � f Þ1

�
ð24Þ

Cf
2

ffiffiffiffiffiffiffi
U1

mx

r
¼ f 00ð0Þ ð25Þ

For the thermal equation, self-similar solutions can be

found for Eckert number equal to )2 or in the trivial
form of the energy equation (stagnation temperature ¼
Tw and Pr ¼ 1). These cases apart, the generic equation is:

h00 þ mþ 1
2

Pr f h þ PrEk f 002 ¼ 0 ð26Þ

with boundary conditions: hð0Þ ¼ 0 and hð1Þ ¼ 1. The
integration was carried out only for the case Ek ¼ 0, the
wall heat transfer coefficient expression as function of

the Prandtl number and dimensionless pressure gradient

m is the following:

ChPr

ffiffiffiffiffiffiffi
U1

mx

r
¼ h0ð0Þ ¼ 1R1

0
expð�Pr mþ1

2

R g0

0
f dg0Þdg

ð27Þ

In Fig. 3, we report variations of skin friction coef-

ficient Cf and heat transfer coefficient Ch as function of
the dimensionless pressure gradient m within a range
from m ¼ �0:0904 to 1 and three values of the Prandtl
number. The skin friction coefficient curve grows faster

than the heat transfer coefficient curve within the range

of medium to high Prandtl number. Near the separation

flow conditions where dimensionless pressure gradient

value m equals )0.0904, Cf curve tends to zero whereas
Ch curves values remains strictly positive even for high
Prandtl numbers.

In Fig. 4, we plotted the analogy factor sext as func-
tion of the dimensionless pressure gradient m. We make
the following remarks with respect to the role of pres-

sure gradient on the analogy factor:

Limiting the range of analysis from the lower bound

m ¼ �0:0904 (separation) to the upper bound m ¼ 1
(stagnation flow), we denote in particular the unsym-

metrical behavior of the analogy factor around the mean

zero value of the gradient (m ¼ 0, flat plate flow without

Fig. 2. Unsteady analogy factor: sunstðPr;EkÞ (log–log graph).

Fig. 3. Skin friction coefficient and heat transfer coefficient as

function of m and Prandtl number.
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gradient). This is a worthy result: Indeed, if we consider

successively negative and positive pressure gradient

variation during a vortex sweeping above the wall, the

mean value of the time integrated analogy factor will be

greater than the value for m ¼ 0.
The second interesting behavior is related with the

analogy breaking between dynamic and thermal bound-

ary layers thicknesses behaviour. Indeed, if we look at

the particular case m ¼ 1, the expression of the analogy
factor simplifies drastically as the boundary layer

thicknesses become constant:

sextðm ¼ 1Þ ¼ D2
d1 þ 2d2

þ Ek
2

3d3 � 2D2
d1 þ 2d � 2

	 

ð28Þ

Therefore even for low Eckert numbers, dynamic and

thermal wall transfer are no longer analogous in the

classic sense, because enthalpy thickness D2 scales with
the linear combination of the dynamic thicknesses d1
and d2.
However for low Eckert number, the analogy factor

for pressure gradient driven boundary layer flow, may

be reduced to a non-linear function of m: fNLðmÞ and a
power law function of Prandtl number:

sextðm; PrÞ ¼ fNLðmÞPr�2=3 ð29Þ

with a singularity (sextðm; PrÞ ! 1) when m ! �0:0904
[13].

5. Application to the vortex boundary layer interaction

5.1. Problem outline

Our main objective in this section is to study nu-

merically the interaction of a transverse vortex structure

with a laminar heated boundary layer over a flat plate

and therefore extract simple dynamic and thermal be-

haviors of the interaction throughout the phenomeno-

logical decomposition. The finite volume code used,

CUTEFLOWS, allows us to simulate the flow but also

to post-treat the results thanks to the phenomenological

decomposition methodology described earlier and im-

plemented in the code.

We expose the methodology and give an example of

interaction simulated for a given strength of interaction.

We simulate a Navier–Stokes incompressible flow with

low dilatability and very small Eckert number (Ek �
10�3).

The numerical model handles the spatial discretiza-

tion through second order finite volume methods and

second order Runge–Kutta scheme for time stepping.

The code gathering these techniques named CUTE-

FLOWS [15] has been validated over a wide number of

cases in the literature. We report a few examples for

cartesian geometries: Treidler [16] used it for flows in

ribbed channels, Giovannini and Bortolus [17,18] sim-

ulated a turbulent flow past a backward step. For cy-

lindrical geometries Suzuki and Humphrey [19] studied

flows between corotating disks in fixed enclosures and

finally Dainese [20] simulated a tri-dimensional flow in a

helicoidal duct.

The non-uniform cartesian mesh is structured with a

averaged density of 315 nodes by meter in the longitu-

dinal direction and 1080 nodes by meter in the trans-

versal direction with increasing density close to the

boundary layer. The geometry and boundary conditions

are sketched in Fig. 5.

The Reynolds number at the end of the plate is ReL ¼
1:1� 105 and the vortex Reynolds number defined as:

ReC ¼ C
2pm

is equal to 2032. The Prandtl number is equal to air

Prandtl value at 300 K (Pr ¼ 0:7). Reference length
scales are the viscous radius core (ro ¼ 0:02 m) for the
vortex, the boundary thickness at the end of the plate

(dL ¼ 0:0134 m) for the boundary layer and for the in-
teraction the vortex center to wall distance (yt ¼ 0:05 m).
The vortex center to wall distance yt should be large

enough to keep the vortex core sufficiently far from the

boundary layer region to avoid overlapping of vortex

vorticity distribution and the boundary layer vorticity

distribution at initial time.

The solution of the vortex wall interaction in po-

tential theory by Pellerin [8] helps us to define the in-

teraction strength parameter:

c ¼ C
4pU1yt

In the following sections, we will present mostly results

with c ¼ �0:1 and some with c ¼ 0:1.

Fig. 4. Analogy factor as function of m for three values of
Prandtl number.
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5.2. Analysis of instantaneous field at t ¼ 0:1

In order to clarify the different flow and temperature

patterns, we analyse a snapshot of the flow during the

interaction between the vortex and the boundary layer.

In Fig. 6, isovorticities and isotherms are reported in

a magnified region near the wall under the vortex core

center. The arrow indicates the station of the vortex

center (xt ¼ 0:542 m). The important feature is the
thinning of the boundary layer under the vortex after the

vortex sweeping followed by thickening of the boundary

layer ahead of the vortex station. Indeed, because of

incompressibility, when the vortex�s circulation is nega-
tive the longitudinal velocity gradient is negative just

ahead of the vortex, leading to a increase of the trans-

versal velocity and the boundary thickness.

The same phenomenon occurs for a vortex with

positive sign of the circulation. However the effects are

reversed, the thickening of the boundary layer being

now after the vortex position. Indeed, the negative lon-

gitudinal velocity gradient is located downstream of the

vortex station and leads to a increase of the boundary

layer thickness right after the vortex position. Fig. 7 il-

lustrates this fact showing the vorticity and temperature

isolines underneath the vortex center at the position

xt ¼ 0:604 m.
In Fig. 8, the variations of the boundary layer

thicknesses for the negative vortex interaction are nor-

Fig. 5. Vortex boundary layer interaction: geometrical and numerical model.

Fig. 6. (a) Vorticity field beneath the vortex. (b) Temperature field underneath the vortex, for c ¼ �0:1 at t ¼ 0:1 s. The arrow in-
dicates the position of the vortex center.
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malized by the values of the flat plate boundary layer

thicknesses.

In Fig. 9 are reported, for the negative vortex inter-

action, the values of the skin friction and the heat

Fig. 7. (a) Vorticity field underneath the vortex. (b) Temperature field underneath the vortex, for c ¼ 0:1 at t ¼ 0:1 s. The arrow
indicates the position of the vortex center.

Fig. 8. Variations of the boundary layer thicknesses around reference values for c ¼ �0:1 at t ¼ 0:1 s.
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transfer coefficient relative to the steady flow values. We

define the normalized skin friction and heat transfer

coefficients as follows:

Cf ¼ Cf � Cfo
Cfo

Ch ¼ Ch� Cho
Cho

where Cfo and Cho are respectively the flat plate skin
friction and heat transfer coefficients. In the same figure,

we plot the variations with respect to x of the pressure
coefficient CpðxÞ and its first derivative ðdCp=dxÞðxÞ. As
reported in [8], we notice that the variation of the

pressure minimum, Cpmin, is a square function of c and
the position of this minimum is related to the vortex

center position xt (Cpmin ¼ �c2=2 in [8]). We notice too
that the skin friction coefficient variation is similar to the

one obtained through the pressure gradient term.

Moreover, the inflexion point for the skin friction co-

efficient is very close to the vortex center xt and the heat
transfer coefficient exhibits a maximum beneath the

vortex center.

5.3. Von Karman analysis

By application of von Karman analysis as described

in Section 1, we split wall shear stress sw and wall heat
flux uw as we stated in Table 1. Although slight modi-

fications have been made in the rewriting of the external

gradient term to enlighten the effect of the external

pressure gradient. With hypothesis H3 and the above

remark, the modified unsteady von Karman equations

read as follows:

sw
q1

¼ U1
o

ot
ðd1Þ þ

o

ox
ðU 21d2Þ � d1

op1
ox

ð30Þ

uw
q1CpðTw � T1Þ

¼ oD1
ot

þ o

ox
ðU1D2Þ ð31Þ

Generically, for the skin friction equation the three

terms are named respectively unsteady term, flat plate

term and pressure gradient term. For the heat transfer,

we have a unsteady term and a flat plate term. Each of

the five terms have been evaluated with time and space

differentiation of the unsteady velocity, pressure and

temperature fields.

5.3.1. Negative circulation case: c ¼ �0:1
We illustrate in Fig. 10 each of these terms at t ¼ 0:1

s. We shall now make the following observations:

With respect to the dynamic terms: the unsteady

contribution reaches a maximum downstream with re-

spect to the vortex center position and a minimum up-

ward. Its amplitude under the vortex fingerprint of

Fig. 9. Wall distributions at t ¼ 0:1 s (c ¼ �0:1) of: (a) Pressure coefficient CpðxÞ and its derivative ðdCp=dxÞðxÞ. (b) Normalized skin
friction and heat transfer.
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extension 2yt is varying inversely with respect to the flat
plate term. Besides, the third term, the external pressure

gradient term contributes significantly to the variation

of the wall shear stress along the plate.

With respect to the thermal terms: the unsteady term

related with the displacement thickness and the flat plate

term related with the enthalpy thickness are competing

with one another. The remaining wall heat flux is the

result of this competition. Underneath the vortex zone,

the terms are qualitatively unsymmetrical, as in the dy-

namic case, but the sum ought to be strictly positive:

wall heat flux keeps always positive values. Any explicit

evidence tells us that the pressure gradient term is linked

with the thermal equilibrium process in the boundary

layer.

Finally, we report in Fig. 11, the evolution of the

analogy factor at different snapshot times. The factor s is
normalized by the non-interacting case value Pr2=3. The
abscissa is related to the moving frame coordinate

travelling with vortex and normalized by the distance to

the wall yt. It is worth noting the rapidly growing value
of the analogy factor peak underneath the vortex posi-

tion with respect to the time. This evolution is confirmed

with stronger interactions, i.e. stronger pressure gradi-

ent, where the peak value at a given time grows like c2.

5.3.2. Positive circulation case: c ¼ 0:1
To give more insights on the analogy factor behavior,

the positive circulation case (c ¼ 0:1) is shown in Fig. 12.

The analogy factor peak grows in the same manner as

the negative vortex case. The main difference lies in the

way the transfer coefficients are relaxing just after the

vortex sweeping (�4 < ðx� xtÞ=yt < �0:5). For negative
vortex interactions, the analogy factor is greater than the

reference state (s ¼ 1) in this region. Whereas for posi-
tive vortex interaction, the different relaxation behavior

of the boundary layer induces lower values than the

Fig. 10. Von Karman term decomposition: c ¼ �0:1 at t ¼ 0:1 s. The arrow indicates the position xt of the vortex center.

Fig. 11. Wall distribution of the unsteady analogy factor for

c ¼ �0:1 in the vortex reference frame.
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reference case for the analogy factor. For other inter-

action parameter values, we refer to [13].

6. Concluding remarks

In this paper we intend to put in evidence through

von Karman integral budget method, the separated ef-

fects of unsteadiness and velocity or temperature gra-

dients on momentum and heat flux wall transfer. We

have shown the sensitivity of each of these terms against

the physical properties of the fluid (Prandtl number) and

flow characteristics (Eckert number, unsteadiness and

pressure gradient).

The sensitivity to the pressure gradient is strong, non-

linear and prone to non-analogous boundary layer ef-

fects, this should be considered as the key argument for

the analogy breakup. The Prandtl number is also obvi-

ously an influent parameter in the investigated range

from 0.1 to 10.

In the second part of this paper, we evaluate sepa-

rately the terms involved in the von Karman budget by

numerical data post-processing. The simulated configu-

ration focuses on the interaction of a transverse vortex

with a flat plate boundary layer. The main remarks on

this topic are the following:

The space and time dependent external pressure

gradient plays a key role in the friction factor evolution.

The heat flux peak under the vortex is related to the

unsteady term.

Concerning the influence of the vortex circulation�s
sign on the analogy factor, we notice that in both cases

the maximum is reached just under the vortex position.

However a different behavior in the relaxation process of

the boundary layer right after the vortex sweeping leads

to greater values of the analogy factor compared to the

reference case for the negative vortex and lower values

for positive vortex.

More detailed parametric studies are in progress in

order to investigate interactions with other values of the

c parameter and the effect of the Prandtl number vari-
ation. The final objective is the inclusion of these results

into a database for thermal and dynamic turbulence

modeling.
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